Алюминий
Алюминий - самый распостраненный в земной коре металл. На его долю приходится 5,5-6,6 мол. доли % или 8 масс. %. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al 2 O 3 . 2SiO 2 . 2H 2 O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al 2 O 3 . xH 2 O и минералы корунд Al 2 O 3 и криолит AlF 3 . 3NaF. Впервые алюминий был получен Велером в 1827 году действием металлического калия на хлорид алюминия. Однако, несмотря на широкую распространенность в природе, алюминий до конца XIX века принадлежал к числу редких металлов. В настоящее время в промышленности алюминий получают электролизом раствора глинозема Al 2 O 3 в расплавленнном криолите. Al 2 O 3 должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Температура плавления Al 2 O 3 около 2050 о С, а криолита - 1100 о С. Электролизу подвергают расплавленную смесь криолита и Al 2 O 3 , содержащую около 10 масс.% Al 2 O 3 , которая плавится при 960 о С и обладает электрической проводимостью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса. При добавлении AlF 3 , CaF 2 и MgF 2 проведение электролиза оказывается возможным при 950 о С. Электролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичом. Его дно (под), собранное из блоков спрессованного угля, служит катодом. Аноды располагаются сверху: это - алюминиевые каркасы, заполненные угольными брикетами. Al 2 O 3 = Al 3+ + AlO 3 3- На катоде выделяется жидкий алюминий: Al 3+ + 3 е - = Al Алюминий собирается на дне печи, откуда периодически выпускается. На аноде выделяется кислород: 4AlO 3 3- - 12 е - = 2Al 2 O 3 + 3O 2 Кислород окисляет графит до оксидов углерода. По мере сгорания углерода анод наращивают. В периодической системе алюминий находится в третьем периоде, в главной подгруппе третьей группы. Заряд ядра +13. Электронное строение атома 1s 2 2s 2 2p 6 3s 2 3p 1 . Металлический атомный радиус 0,143 нм, ковалентный - 0,126 нм, условный радиус иона Al 3+ - 0,057 нм. Энергия ионизации Al - Al + 5,99 эВ. Наиболее характерная степень окисления атома алюминия +3.Отрицательная степень окисления проявляется редко. Во внешнем электронном слое атома существуют свободные d -подуровни. Благодаря этому его координационное число в соединениях может равняться не только 4 (AlCl 4- , AlH 4- , алюмосиликаты), но и 6 (Al 2 O 3 ,[Al(OH 2 ) 6 ] 3+ ). Алюминий - типичный амфотерный элемент. Для него характерны не только анионные, но и катионные комплексы. Так, в кислой среде существует катионный аквакомплекс [Al(OH 2 ) 6 ] 3+ , а в щелочной - анионный гидрокомплекс и [Al(OH) 6 ] 3- . В виде простого вещества алюминий - серебристо-белый, довольно твердый металл с плотностью 2,7 г/см 3 (т.пл. 660 о С, т. кип. ~2500 о С). Кристаллизуется в гранецентрированной кубической решетке. Характеризуется высокой тягучестью, теплопроводностью и электропроводностью (составляющей 0,6 электропроводности меди). С этим связано его использование в производстве электрических проводов. При одинаковой электрической проводимости алюминмевый провод весит вдвое меньше медного. На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид. При обработке поверхности алюминия сильными окислителями (конц. HNO 3 , K 2 Cr 2 O 7 ) или анодным окислением толщина защитной пленки возрастает. Устойчивость алюминмя позволяет изготавливать из него химическую аппаратуру и емкости для хранения и транспортировки азотной кислоты. Алюминий легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов. Основную массу алюминия используют для получения различных сплавов, наряду с хорошими механическими качествами характеризующихся своей легкостью. Важнейшие из них - дуралюминий (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумин (85 - 90% Al, 10 - 14% Sk, 0,1% Na) и др. Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды и во многих других отраслях промышленности. По широте применения сплавы алюминия занимают второе место после стали и чугуна. Алюминий, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости. При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом - при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует. По отношению к воде алюминий вполне устойчив. Но если механическим путем или амальгамированием снять предохраняющее действие оксидной пленки, то происходит энергичная реакция: 2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 Сильно разбавленные, а также очень концентрированные HNO3 и H2SO4 на алюминий почти не действуют (на холоду), тогда как при средних концентрациях этих кислот он постепенно растворяется. Чистый алюминий довольно устойчив и по отношению к соляной кислоте, но обычный технический металл в ней растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты - соли, содержащие алюминий в составе аниона: Al 2 O 3 + 2NaOH + 3H 2 O = 2Na[Al(OH) 4 ] Алюминий, лишенный защитной пленки, взаимодействует с водой, вытесняя из нее водород: 2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат: Al(OH) 3 + NaOH = Na[Al(OH) 4 ] Суммарное уравнение растворения алюминия в водном растворе щелочи: 2Al + 2NaOH + 6H 2 O = 2Na[Al(OH) 4 ] + 3H 2 Алюминий заметно растворяется в растворах солей, имеющих вследствие их гидролиза кислую или щелочную реакцию, например, в растворе Na 2 CO 3 . В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях алюминий трехвалентен. Соединение алюминия с кислородом сопровождается громадным выделением тепла (1676 кДж/моль Al 2 O 3 ), значительно большим, чем у многих других металлов. В виду этого при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Mn, V, W и др.) в свободном состоянии. Алюмотермией иногда пользуются для сварки отдельных стальных частей, в часности стыков трамвайных рельсов. Применяемая смесь (“термит”) состоит обычно из тонких порошков алюминия и Fe 3 O 4 . Поджигается она при помощи запала из смеси Al и BaO 2 . Основная реакция идет по уравнению: 8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe + 3350 кДж Причем развивается температура около 3000 о С. Оксид алюминия представляет собой белую, очень тугоплавкую (т. пл. 2050 о С) и нерастворимую в воде массу. Природный Al 2 O 3 (минерал корунд), а также полученный искусственно и затем сильно прокаленный отличается большой твердостью и нерастворимостью в кислотах. В растворимое состояние Al 2 O 3 (т. н. глинозем) можно перевести сплавлением со щелочами. Обычно загрязненный оксидом железа природный корунд вследствие своей чрезвычайной твердости применяется для изготовления шлифовальных кругов, брусков и т.д. В мелко раздробленном виде он под названием наждака служит для очистки металлических поверхностей и изготовления наждачной бумаги. Для тех же целей часто пользуются Al 2 O 3 , получаемым сплавлением боксита (техническое название - алунд). Прозрачные окрашеннные кристаллы корунда - красный рубин - примесь хрома - и синий сапфир - примесь титана и железа - драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr 2 O 3 , применяют в качестве квантовых генераторов - лазеров, создающих направленный пучок монохроматического излучения. Ввиду нерастворимости Al 2 O 3 в воде отвечающий этому оксиду гидроксид Al(OH) 3 может быть получен лишь косвенным путем из солей. Получение гидроксида можно представить в виде следующей схемы. При действии щелочей ионами OH - постепенно замещаются в аквокомплексах [Al(OH 2 ) 6 ] 3+ молекулы воды: [Al(OH 2 ) 6 ] 3+ + OH - = [Al(OH)(OH 2 ) 5 ] 2+ + H 2 O [Al(OH)(OH 2 ) 5 ] 2+ + OH - = [Al(OH) 2 (OH 2 ) 4 ] + + H 2 O [Al(OH) 2 (OH 2 ) 4 ] + + OH - = [Al(OH) 3 (OH 2 ) 3 ] 0 + H 2 O Al(OH) 3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и основные и особенно кислотные его свойства выражены довольно слабо. В избытке NH 4 OH гидроксид алюминия нерастворим. Одна из форм дегидратированного гидроксида - алюмогель используется в технике в качестве адсорбента. При взаимодействии с сильными щелочами образуются соответствующие алюминаты: NaOH + Al(OH) 3 = Na[Al(OH) 4 ] Алюминаты наиболее активных одновалентных металлов в воде хорошо растворимы, но ввиду сильного гидролиза растворы их устойчивы лишь при наличии достаточного избытка щелочи. Алюминаты, производящиеся от более слабых оснований, гидролизованы в растворе практически нацело и поэтому могут быть получены только сухим путем (сплавлением Al 2 O 3 с оксидами соответствующих металлов). Образуются метаалюминаты, по своему составу производящиеся от метаалюминиевой кислоты HAlO 2 . Большинство из них в воде нерастворимо. С кислотами Al(OH) 3 образует соли. Производные большинства сильных кислот хорошо растворимы в воде, но довольно значительно гидролизованы, и поэтому растворы их показывают кислую реакцию. Еще сильнее гидролизованы растворимые соли алюминия и слабых кислот. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли алюминия из водных растворов получить не удается. В водной среде анион Al 3+ непосредственно окружен шестью молекулами воды. Такой гидратированный ион несколько диссоциирован по схеме: [Al(OH 2 ) 6 ] 3+ + H 2 O = [Al(OH)(OH 2 ) 5 ] 2+ + OH 3 + Константа его диссоциации равна 1 . 10 -5 ,т.е. он является слабой кислотой (близкой по силе к уксусной). Октаэдрическое окружение Al 3+ шестью молекулами воды сохраняется и в кристаллогидратах ряда солей алюминия. Алюмосиликаты можно рассматривать как силикаты, в которых часть кремниекислородных тетраэдров SiO 4 4- заменена на алюмокислородные тетраэдры AlO 4 5- . Из алюмосиликатов наиболее распространены полевые шпаты, на долю которых приходится более половины массы земной коры. Главные их представители - минералы ортоклаз K 2 Al 2 Si 6 O 16 или K 2 O . Al 2 O 3 . 6SiO 2 альбит Na 2 Al 2 Si 6 O 16 или Na 2 O . Al 2 O 3 . 6SiO 2 анортит CaAl 2 Si 2 O 8 или CaO . Al 2 O 3 . 2SiO 2 Очень распространены минералы группы слюд, например мусковит Kal 2 (AlSi 3 O 10 )(OH) 2 . Большое практическое значение имеет минерал нефелин (Na,K) 2 [Al 2 Si 2 O 8 ], который используется для получения глинозема содовых продуктов и цемента. Это производство складывается из следующих операций: a) нефелин и известняк спекают в трубчатых печах при 1200 о С: (Na,K) 2 [Al 2 Si 2 O 8 ] + 2CaCO 3 = 2CaSiO 3 + NaAlO 2 + KAlO 2 + 2CO 2 б) образовавшуюся массу выщелачивают водой - образуется раствор алюминатов натрия и калия и шлам CaSiO 3 : NaAlO 2 + KAlO 2 + 4H 2 O = Na[Al(OH) 4 ] + K[Al(OH) 4 ] в) через раствор алюминатов пропускают образовавшийся при спекании CO 2 : Na[Al(OH) 4 ] + K[Al(OH) 4 ] + 2CO 2 = NaHCO 3 + KHCO 3 + 2Al(OH) 3 г) нагреванием Al(OH) 3 получают глинозем: 2Al(OH) 3 = Al 2 O 3 + 3H 2 O д) выпариванием маточного раствора выделяют соду и потаж, а ранее полученный шлам идет на производство цемента. При производстве 1 т Al 2 O 3 получают 1 т содопродуктов и 7.5 т цемента. Некоторые алюмосиликаты обладают рыхлой структурой и способны к ионному обмену. Такие силикаты - природные и особенно искусственные - применяются для водоумягчения. Кроме того, благодаря своей сильно развитой поверхности, они используются в качестве носителей катализаторов, т.е. как материалы, пропитываемые катализатором. Галогениды алюминия в обычных условиях - бесцветные кристаллические вещества. В ряду галогенидов алюминия AlF 3 сильно отличается по свойствам от своих аналогов. Он тугоплавок, мало растворяется в воде, химически неактивен. Основной способ получения AlF 3 основан на действии безводного HF на Al 2 O 3 или Al: Al 2 O 3 + 6HF = 2AlF 3 + 3H 2 O Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма реакционноспособны и хорошо растворимы не только в воде, но и во многих органических растворителях. Взаимодействие галогенидов алюминия с водой сопровождается значительным выделением теплоты. В водном растворе все они сильно гидролизованы, но в отличие от типичных кислотных галогенидов неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже при обычных условиях, AlCl 3 , AlBr 3 и AlI 3 дымят во влажном воздухе (вследствие гидролиза). Они могут быть получены прямым взаимодействием простых веществ. Плотности паров AlCl 3 , AlBr 3 и AlI 3 при сравнительно невысоких температурах более или менее точно соответствуют удвоенным формулам - Al 2 Hal 6 . Пространственная структура этих молекул отвечает двум тетраэдрам с общим ребром. Каждый атом алюминия связан с четырьмя атомами галогена, а каждый из центральных атомов галогена - с обоими атомами алюминия. Из двух связей центрального атома галогена одна является донорно-акцепторной, причем алюминий функционирует в качестве акцептора. С галогенидными солями ряда одновалентных металлов галогениды алюминия образуют комплексные соединения, главным образом типов M 3 [AlF 6 ] и M[AlHal 4 ] (где Hal - хлор, бром или иод). Склонность к реакциям присоединения вообще сильно выражена у рассматриваемых галогенидов. Именно с этим связано важнейшее техническое применение AlCl 3 в качестве катализатора (при переработке нефти и при органических синтезах). Из фторалюминатов наибольшее применение (для получения Al, F 2 , эмалей, стекла и пр.) имеет криолит Na 3 [AlF 6 ]. Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой: 2Al(OH) 3 + 12HF + 3Na 2 CO 3 = 2Na 3 [AlF 6 ] + 3CO 2 + 9H 2 O Хлоро-, бромо- и иодоалюминаты получаются при сплавлении тригалогенидов алюминия с галогенидами соответствующих металлов. Хотя с водородом алюминий химически не взаимодействует, гидрид алюминия можно получить косвенным путем. Он представляет собой белую аморфную массу состава (AlH 3 ) n . Разлагается при нагревании выше 105 о С с выделением водорода. При взаимодействии AlH 3 с основными гидридами в эфирном растворе образуются гидроалюминаты: LiH + AlH 3 = Li[AlH 4 ] Гидридоалюминаты - белые твердые вещества. Бурно разлагаются водой. Они - сильные восстановители. Применяются (в особенности Li[AlH 4 ]) в органическом синтезе. Сульфат алюминия Al 2 (SO 4 ) 3 . 18H 2 O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги. Алюмокалиевые квасцы KAl(SO 4 ) 2 . 12H 2 O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне. Из остальных производных алюминия следует упомянуть его ацетат (иначе - уксуснокислую соль) Al(CH 3 COO) 3 , используемый при крашении тканей (в качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной кислоте, но растворим в сильных кислотах и щелочах. Несмотря на наличие громадных количеств алюминия в почках, растениях, как правило, содержат мало этого элемента. Еще значительно меньше его содержание в животных организмах. У человека оно составляет лишь десятитысячные доли процента по массе. Биологическая роль алюминия не выяснена. Токсичностью соединения его не обладают. Реакции, проведенные на практикуме 1. 2Al + 2NaOH + 6H 2 O = 2Na[Al(OH) 4 ] + 3H 2 На пластинке алюминия начал выделяться водород, постепенно пластинка растаяла. 2. 2Al + 3H 2 SO 4 = Al 2 (SO 4 ) 3 + 3H 2 Алюминий постепенно растворяется в разбавленной кислоте. При кипячении скорость растворения увеличивается. 3. 2Al + 6CH 3 COOH = 2Al(CH 3 COO) 3 + 3H 2 Алюминий постепенно растворяется в разбавленной кислоте при кипячении. 4. 4Al + 3O 2 = 2Al 2 O 3 При сгорании алюминий превращается в белый порошок. 5. Al 2 O 3 + 2NaOH + 3H 2 O = 2Na[Al(OH) 4 ] Полученный оксид алюминия растворяется в щелочи. 6. 2Al + 3I 2 = 2AlI 3 В ступку со смесью алюминия и иода добавили каплю воды в качестве катализатора. Реакция прошла быстро, выделились пары иода фиолетового цвета. 7. 3CuCl 2 + 2Al = 3Cu + 2AlCl 3 Раствор постепенно стал прозрачным, на дно пробирки выпал осадок меди в виде бурых камешков. 8. Al 2 (SO 4 ) 3 + 6NH 4 OH = 2Al(OH) 3Ї + 3(NH 4 ) 2 SO 4 Образовался осадок, похожий на белый жидкий кисель. 9. Al(OH) 3 + NaOH = Na[Al(OH) 4 ] Осадок растворился в щелочи. 10. 2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4 ) 3 + 6H 2 O Осадок растворился в кислоте. Термодинамический расчет 2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 D H обр о ,кДж/моль 0 -285,83 . 6 -1315 . 2 0 S о ,Дж/К 28,35 . 2 70,08 . 6 70,1 . 2 130,52 . 3 D H = -915,02 ; D S = 54,58 D G = D H - TD S = -915020 - 54,58 . 298,15 = -931293,027 Дж/моль
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ: 1. В.А.Рабинович, З.Я.Хавин “Краткий химический справочник” 2. Л.С.Гузей “Лекции по общей химии” 3. Н.С.Ахметов “Общая и неорганическая химия” 4. Б.В.Некрасов “Учебник общей химии” 5. Н.Л.Глинка “Общая химия” Поделитесь этой записью или добавьте в закладки |
Полезные публикации |