Химические свойства четырех- и шестивалентного урана
Уран - белый металл плотностью 18,3 г/см, плавящийся при температуре 1133 градуса. Металл достаточно активен - при слабом нагревании он загорается в присутствии воздуха. Он легко соединяется с серой и галогенами, вытесняет водород из разбавленных кислот, с образованием солей четырехвалентного урана, а в очень измельченном виде вытесняет водород из воды. Урановый ангидрит имеет характер амфотерного окисла который при растворении в кислотах образует соли, где роль металла играет ион, а при растворении в щелочах образует кислотные остатки в виде комплексных соединений. В химических соединениях уран может находится в четырех валентных состояниях U 3+ , U 4+ , U 5+ , U 6+ . U 3+ в природных условиях не существует и может быть получен только в лаборатории. Соединения пятивалентного урана в основном не устойчивы и легко разлагаются на соединения четырех- и шестивалентного урана. 2UCl 5 = UCl 4 + UCl 6 В водных растворах U 5+ находят в виде комплексного иона (UO 2 ) + . В щелочной среде устой чивость иона возрастает. Наиболее устойчивыми ионами в природных условиях являются четырех- и шести валентный уран. Ионы четырехвалентного урана устойчивы в востановительной обстановке. Они получаются путем потери двух электронов с s подуровня 7-го уровня d-подуровня 6-го уровня и f-подуровня 5-го уровня при этом образуется ионы с внешним восьмиэлектронным уровнем аналогичным с благородными газами что характерно для литофильных элементов. Это объясняет их высокую химическую активность по отношению к кислороду и с абуюполяризационную способность. В сильнощелочных растворах U 4+ может проявлять ангидридные свойства, но в нейтральных и слабокислых активно реагирует с ионами гидроксила, а гидроксил четырехвалентного урана плохо растворяется в воде. Для U(OH) 4 растворимость составляет 5,2 * 10 -12 моль/л, что в 1000 раз ниже растворимости гидроксида алюминия. В отличии от четырехвалентного урана шестивалентный уран принимает более активное участие в геологических процессах. Для UО 2 (OH) 2 растворимость составляет 3,5 * 10 -9 моль/л. Константа диссоциации равна 2 * 10 -22 . В неитральной среде концентрация ионов уранила равна 10 -8 моль/л и только в кислых растворах рН=4 она повышается до 10 -2 моль/л. Учитывая, что в растворе могут присутствовать, как продукты гидролиза, ионы UO 2 (OH) + , общая концентрация ионов урана в нейтральной среде не опускается ниже 10 -6 моль/л. Катион UO 2 +2 представляет собой линейное образование в центре которого находится U 4+ , а атомы кислорода расположены на одинаковых растояниях. По данным ионных радиусов было установлено, что связь атома урана с атомами кислорода носит ковалентный характер. При ковалентной связи атомы имеют общие элкектроны, которые объясняют высокую прочность соединения. Низкую прочность соединений шестивалентного урана объясняется тем что весь заряд сосредоточен вокруг урана, а не вокруг кислорда. Ионный радиус этого катиона примерно равен 3 А, такой радиус значительно затрудняет изоморфное вхождение в кристаллическую структуру. Следовательно самостоятельные минералы шестивалентного урана могут образовываться в основном с крупными анионами. Большие размеры катиона U +6 объясняют его накопление в мелкозернистых породах. Распространенность урана в земной коре. Несмотря на высокий атомный номер и возможность распада ядер, содержание урана в земной коре относительно высокое. В земной коре содержится около 2,5 * 10 -4 % урана. В коре содержание урана достигает 4 * 10 -4 %, в мантии 1,2 * 10 -6 % и ядре 3 * 10 -7 %. Уран в различных геологических процессах. Не смотря на сравнительно высокое содержание урана в магматических горных породах он практически не образует промышленных концентраций. Как уже отмечалось повышенные концентрации этого элемента отмечены в щелочных породах. В Ловозерском массиве установлена следующая примерная схема кристаллизации магмы: полевые шпаты, нефелин, эгирин, лампрофиллит, эвдиалит, ферсманит, лопарит. По приведенной последовательности можно предположить, что в щелочных расплавах первыми кристаллизуются минералы содержащие ионы с меньшими валентностями. Причем чем выше концентрация щелочей относительно концентрации высоковалентных катионов, тем сильнее влияние этих щелочей на роль высоковалентных кватионов в минералообразовании. Так появление титанн-цирконий-ниобий-силикатов определяет начало вовлечение урана в магматическое минералообразование. На этом этапе повышаются содержания урана в породообразующих минералах. При повышеной щелочности относительно концентрации Al 3+ , Fe 3+ , Ti 4+ , циркон и торит оразоватся не могут, в результате проявляются ангидридные свойства циркония и кристаллизуется эвдиалит (Na,Ca) 6 Zr[Si 6 O 18 ](Cl,OH), это также справедливо и для урана. По силе основности был составлен ряд определяющий вовлечение указаных элементов в состав породообразующих минералов. На основе изученных данных уран уличен в корреляционной связи с относительным содержанием щелочей. Эта корреляция не имеет прямой зависимости ,а подчиняется пропорциональной связи со степенью агпаитности пород, отражающей соотношения в магматическом расплаве оснований с кислотными остатками. В ураноносных пегматитах концентрация редкоземельных элементов превышает в 50-80 раз соответствующие кларки. Для пегматитов характерно разделение этих элементов на две группы - церия и иттрия. Уран чаще связан с группой иттрия. До 98% урана сосредоточено в акцессорных и собственных минералах. Концентрации урана достигают десятых долей процента от массы пегматитовой жилы. Поделитесь этой записью или добавьте в закладки | Полезные публикации |